Symplectic Geometry

Homework 13

Exercise 1. (10 points)
Prove the following proposition discussed in class.
Proposition: Suppose a Lie group G acts on a symplectic manifold (M, ω) in a Hamiltonian way, with a moment map $\mu: M \rightarrow \mathfrak{g}^{*}$, and H is a Lie subgroup of G. Let $j^{*}: \mathfrak{g}^{*} \rightarrow \mathfrak{h}^{*}$ denote the dual of the map $j: \mathfrak{h}=\operatorname{Lie}(H) \rightarrow \mathfrak{g}$ induced by the inclusion of H into G. Then the induced action of H on (M, ω) is also Hamiltonian and $\mu_{H}:=j^{*} \circ \mu: M \rightarrow \mathfrak{h}^{*}$ is a moment map.

Exercise 2. (10 points)
Fix integers k_{1}, \ldots, k_{n} and consider the S^{1} action on \mathbb{C}^{n} given by

$$
e^{i \theta} *\left(z_{1}, \ldots, z_{n}\right)=\left(e^{i k_{1} \theta} z_{1}, \ldots, e^{i k_{n} \theta} z_{n}\right)
$$

- Find a moment map μ for this circle action.
- Describe the level sets $\mu^{-1}(a)$ for $a \in \operatorname{Lie}\left(S^{1}\right)^{*} \cong \mathbb{R}$.
- Consider a such that $\mu^{-1}(a)$ is of maximal possible dimension (here: $2 n-1$), and the induced S^{1} action on $\mu^{-1}(a)$. Show that this action is free if and only if $\left|k_{1}\right|=\ldots=\left|k_{n}\right|=1$.
The quotient, $\mu^{-1}(a) / S^{1}$, is called a weighted projective space and denoted by $\mathbb{C P}\left(k_{1}, \ldots, k_{n}\right)$. The last statement implies that $\mathbb{C P}\left(k_{1}, \ldots, k_{n}\right)$ is a smooth manifold if and only if $\left|k_{1}\right|=\ldots=\left|k_{n}\right|=1$. Otherwise it is an orbifold.

Exercise 3. (10 points)
Recall the definition of the Poisson structure on (M, ω) :

$$
\{f, g\}:=\omega\left(X_{f}, X_{g}\right)
$$

Prove that $\{$,$\} satisfies the Jacobi identity.$
Hint: You may want to use the following general formula for the derivative of a k form η :

$$
\begin{gathered}
(d \eta)\left(X_{1}, \ldots, X_{k+1}\right)= \\
\sum_{j=1}^{k+1}(-1)^{j+1} \mathcal{L}_{X_{j}}\left(\eta\left(X_{1}, \ldots, \hat{X}_{j}, \ldots, X_{k+1}\right)\right)+\sum_{1 \leq i<j \leq k+1}(-1)^{i+j} \eta\left(\left[X_{i}, X_{j}\right], X_{1}, \ldots, \hat{X}_{i}, \ldots, \hat{X}_{j}, \ldots, X_{k+1}\right),
\end{gathered}
$$

and the fact that for a vector field X and a function f we have that $\mathcal{L}_{X}(f)=d f(X)=X(f)$.
As usually, I am using the symbol \hat{X}_{j} to denote that X_{j} is not one of the arguments.

Exercise 4. (10 points)
Suppose a Lie group G acts on a symplectic manifold (M, ω) in a Hamiltonian way, with a moment map $\mu: M \rightarrow \mathfrak{g}^{*}$. Take any $p \in M$ and let G_{p} denote the stabilizer of p, and \mathcal{O}_{p} the G orbit through p, i.e.

$$
G_{p}:=\operatorname{Stab}(p)=\{g \in G ; g * p=p\}, \quad \mathcal{O}_{p}:=\{g * p ; g \in G\}
$$

Show that

$$
\operatorname{ker}\left(d \mu_{\mid p}\right)=\left(T_{p} \mathcal{O}_{p}\right)^{\omega_{p}}, \quad \operatorname{im}\left(d \mu_{\mid p}\right)=\mathfrak{g}_{p}^{0}
$$

where $\mathfrak{g}_{p}^{0}:=\left\{\xi \in \mathfrak{g}^{*} ; \forall X \in \mathfrak{g}_{p}\langle\xi, X\rangle=0\right\} \subset \mathfrak{g}^{*}$ denotes the annihilator of \mathfrak{g}_{p}.

